

IBPS RRB PO Preliminary Grand Test -IRPP-170815 **HINTS & SOLUTIONS**

ANSWER KEY				
1.(5)	21.(2)	41.(1)	61.(4)	
2.(2)	22.(4)	42.(1)	62.(5)	
3.(3)	23.(3)	43.(5)	63.(4)	
4.(2)	24.(4)	44.(4)	64.(2)	
5.(4)	25.(3)	45.(2)	65.(5)	
6.(3)	26.(2)	46.(5)	66.(4)	
7.(5)	27.(1)	47.(3)	67.(1)	
8.(1)	28.(3)	48.(4)	68.(1)	
9.(4)	29.(4)	49.(1)	69.(3)	
10.(2)	30.(2)	50.(2)	70.(5)	
11.(1)	31.(2)	51.(5)	71.(5)	
12.(3)	32.(5)	52.(4)	72.(4)	
13.(5)	33.(3)	53.(5)	73.(4)	
14.(3)	34.(1)	54.(4)	74.(2)	
15.(3)	35.(4)	55.(5)	75.(4)	
16.(3)	36.(1)	56.(5)	76.(2)	
17.(2)	37.(2)	57.(4)	77.(5)	
18.(4)	38.(3)	58.(5)	78.(3)	
19.(3)	39.(4)	59.(1)	79.(2)	
20.(2)	40.(2)	60.(2)	80.(3)	

11-15.

DAYS	LECTURES	
Monday	Organisational	
	Behaviour	
Tuesday	Psychology	
Wednesday	Statistics	
Thursday	Computer Science	
Friday	Research Methods	
Saturday	OFF	
Sunday	Economics	

11.(1)

Codes are defined on the basis of the days above and 12.(3) below the OFF day. So according to the OFF day (Saturday), there are 5 days before it and 1 day after it. So the required code is 5 - 1.

14.(3)

13.(5) 15.(3)

16.(3)

18.(4)

19.(3)

20.(2

2)		
		~/ \\
		/ truth
	((mirror) reflector) X (real	() """
		\mathcal{L}
		\neg
		false

- 21.(2) Only one will formed which will be divisible by 3.
- 22.(4)
- 24.(4) 432 873 761 954 882
- 25.(3) $8 \div 8 = 1$

HINTS & SOLUTIONS

1.(5) 3.(3)

5.(4) 6-10.

Floor No	Person	Smartphone
7	L	White
6	P	Grey
5	N	Black
4	K	Pink
3	J	Red
2	0	Purple
1	М	Blue

7.(5)

9.(4)

6.(3)

8.(1)

10.(2)

Grand Test - IRPP-170815

- 26.(2) 28.(3) 30.(2)
- 31-35. \$-<u>></u>
 - # -<u><</u> @->
 - © =
- % < 31.(2) Statement: H < J = N > R
 - Conclusions: R < J H > JN > H
- Statement: $M > J \ge T = N$ 32.(5) Conclusions: $N \leq J$ T < M
- M > NStatement: $D = K \le F > P$ 33.(3) Conclusions: P > D
- $K \leq P$ $F \ge D$ Statement: $K \le N \ge T < J$ 34.(1)
- Conclusions: J > NK > TT > K
- 35.(4) Statement: $M > D = V \ge \overline{W}$ Conclusions: W > M M < V
- $D \ge W$ you - ra 36-40. are – ja how - za intelligent - na very - sa they/seem - la/pa
- is/she fu/ka 36.(1) 37.(2) 38.(3)

can/say - pu/li

- 39.(4) 40.(2)
- 41.(1) x = -6; y = -7, -8; Therefore x > y
- x = 5.92; y = -6, -7; 42.(1) Therefore x > y
- 43.(5) $2x^2 - 3x - 35 = 0 \Rightarrow x = 5, -3.5$ $y^2 - 7y + 6 = 0 \Rightarrow y = 1, 6$ Therefore No relation between x and y
- 44.(4) $6x^2 - 29x + 35 = 0 \Rightarrow x = 2.5, 2.33$ $2y^2 - 19y + 35 = 0 \Rightarrow y = 7, 2.5$
- Therefore $y \ge x$. 45.(2) $12x^2 - 47x + 40 = 0 \Rightarrow x = 2.67, 1.25$ $4y^2 + 3y - 10 = 0 \Rightarrow y = 1.25, -2$
- Therefore $y \le x$. 46.(5) Both the statements are needed.
- 47.(3) Either of the statements is sufficient.

- 48.(4) Both the statements A & B together are not sufficient to
- 49.(1) Only statement I is sufficient but II is not sufficient.
- 50.(2) Only IInd is sufficient but I is not sufficient.
- $900 + 700 + 300 + 850 + 550 = \frac{3300}{2} = 660$ 51.(5)
 - Average = 6660.
- $A = \frac{600}{900} = 66\%$ 52.(4)
- Average of expenditure 53.(5) 600 + 300 + 150 + 450 + 350 = 370
 - Average of income

$$=\frac{900+700+300+850+550}{5}=660$$

- Total sum = 370 + 660 = 1030.
- Total expenditure eof A + B + C
 - =600 + 300 + 150 = 1050
 - Total income of C + D + E = 300 + 850 + 550 = 1700

$$\Rightarrow \frac{1050}{1700} \times 100 = 61.76 \approx 62$$

D + A income = 850 + 550 = 140055.(5)

Total expenditure =
$$\frac{1400}{1850} = \frac{28}{37} = 28:37$$

- Required no. of Govt. projects handled = $\frac{20}{100}$ (360 + 250) 56.(5)
- Required no. of Govt. projects handled 57.(4) $=(130+320)-(2\times127)$
 - =450-254
 - = 196
- Required % decrease

$$= \frac{320 - 190}{320} \times 100$$
$$= \frac{1300}{32} = \frac{325}{8}$$
$$= 40\frac{5}{8}$$

- No. of projects handled by TCS in $2009 = \frac{120}{100} \times \frac{105}{100} \times 300$ 59.(1)
- 60.(2) Required difference = (210 + 300) - (180 + 230)
 - = 510 410= 100
- 61.(4) Required Difference = 1268 - 1103 = 165 lakh
- Required Average = $\frac{(262+266+225+218+164)}{}$ 62.(5) $=\frac{1165}{}=233$
- Required difference = 1345 1130 63.(4) = 215
- Required Average = $\frac{331+232+180+208+272}{1}$ 64.(2) $=\frac{1223}{5}=244.6$ lakh
- Required Percent = $\frac{262-162}{162} \times 100$ 65.(5) $=\frac{100}{162} \times 100$ = 61.72% = 62%

Grand Test - IRPP-170815

. Amount after 2 years = 35500 $\times \frac{130}{100}$ 66.(4)

= 46150

Amount after 5 years = $46150 \times \left(1 + \frac{20}{100}\right)^3$

= 79747.2

Total interest = 79747.2 - 35500

67.(1) Distance covered in two and half hours by thief $= 60 \times 2.5 = 150$ km.

 $\frac{150}{x-60} = 5.5 \Rightarrow x = 87.27 \text{ km/hr}.$

- $\frac{150 + L_2}{108 \times \left(\frac{5}{18}\right)} = 7 \Rightarrow L_2 = 60 \text{ m}.$ 68.(1)
- 69.(3) A + B + C per day work = $\frac{1}{10} + \frac{1}{50} = \frac{6}{50}$ (i)

 $2(B+C) = \frac{6}{50}$

 $(B+C)=\frac{3}{50}$

$$(A + B) + (B + C) = \frac{1}{10} + \frac{3}{50} = \frac{8}{50}$$
....(ii)

Using (i) and (ii)

$$B \rightarrow \frac{2}{50} \text{ or } \frac{1}{25}$$

So B can complete work in 25 days $\frac{\pi r^2}{2} = 1925$

70.(5)

r = 35

$$\pi r + r = b = \frac{22}{7} \times 35 + 35$$

= 145

ℓ = 192

 $2(\ell + b) = 674 \text{ cm}$ $3 \times 3 + 2 = 11$ 71.(5)

⇒11×3+2=35

 \Rightarrow 35×3+2=107

⇒107×3+2=323

72.(4) \Rightarrow 3 × 2+ 2² = 10 \Rightarrow 10 × 3 + 3² = 39

 $39 \times 4 + 4^2 = 172 \Rightarrow 172 \times 5 + 5^2 = 885$ $8 \times 2 - 1 = 15$ 73.(4)

$$(4) 8 \times 2 - 1 = 15$$

 $15 \times 2 - 1 = 29$

 $29 \times 2 - 1 = 57 \dots$ $1^3 = 1 \Rightarrow 3^3 = 27 \Rightarrow 5^3 = 125$

74.(2)

 $7^3 = 343 \Rightarrow 9^3 = 729$

75.(4) Alternate series

81

 $44 = \frac{x}{100} \times 100 \Longrightarrow x = 40$ 76.(2)

 $\frac{8^{0.75} \times 8^1}{8^{-2}} = 8^? \implies 8^{3.75} = 8^? \implies ? = 3.75$ 77.(5)

78.(3)

 $2.6 \times 15 = 30$ 79.(2)

80.(3) $\frac{4}{10} \times \frac{6}{10} \times \frac{3}{5} \times 2750 = 396$